Recap: Basic Text Analysis

- Represent text in terms of "features" (e.g., how often each word/phrase appears, whether it's a named entity, etc)
- Can repeat this for different documents: represent each document as a "feature vector"
"Sentence":

In general (not just text): first represent data as feature vectors

Example: Representing an Image

Image source: starwars.com

Back to Text

Unigram bag of words model is already quite powerful:

- Enough to learn topics (each text doc: raw word counts without stopwords)
- Enough to learn a simple detector for email spam

These are HW2 problems

Finding Possibly Related Entities

f) \because in \triangle

The solar batteries have reportedly been spotted in San Juan's airport.
By John Patrick Pullen Octoher 16, 2017
暗

Exactly one week after Tesla $¢ E O$ Elon Musk sugested his company could help with Puerto Rico's electricity crisis in the aftermath of Hurricane Maria, more of the company's Powerwall battery packs have arrived on the island, according to a photo snapped at San Juan airport Friday, Oct. 13.

Source: http://fortune.com/2017/10/16/elon-musks-tesla-powerwalls-have-landed-in-puerto-rico/

Co-Occurrences

For example: count \# news articles that have different named entities co-occur

What does it mean for a named entity to co-occur with itself?
Example: could count \# articles in which word appears ≥ 2 times

Different Ways to Count

- Just saw: for all doc's, count \# of doc's in which two named entities co-occur
- This approach ignores \# of co-occurrences within a specific document (e.g., if 1 doc has "Elon Musk" and "Tesla" appear 10 times, we count this as 1)
- Could instead add \# co-occurrences, not just whether it happened in a doc
- Instead of looking at \# doc's, look at co-occurrences within a sentence, or a paragraph, etc

Bottom Line

- There are many ways to count co-occurrences
- You should think about what makes the most sense/is reasonable for the problem you're looking at

We aim to find interesting relationships by looking at co-occurrences

Black and white frequently co-occur, but is this relationship interesting?

How l'm counting: For each pixel, look at neighboring 4 pixels and compare their values (1 of "green green", "green white", "green black", "white white", "white black", "black black")

	Green	White	Black
Green	1000	200	200
White		2000	350
Black			2000

Probability of drawing "White, Black"? 350/5750

Probability of drawing a card that has "White" on it?

$$
(200+2000+350) / 5750
$$

1000 of these cards:
Green, Green

200 of these cards:
Green, White

200 of these cards:
Green, Black
$P($ Green, White $)=\frac{200}{5750}$

$$
P(\text { Green, Black })=\frac{200}{5750}
$$

$P($ White, Black $)=\frac{350}{5750}$

$$
P(\text { Green })=\frac{1400}{5750}
$$

$$
P(\text { White })=\frac{2550}{5750}
$$

$$
P(\text { Black })=\frac{2550}{5750}
$$

Measuring Association: Pointwise Mutual Information (PMI)

$$
\mathrm{PMI}(\mathrm{~A}, \mathrm{~B})=\log _{2} \frac{\mathrm{P}(\mathrm{~A}, \mathrm{~B})}{\mathrm{P}(\mathrm{~A}) \mathrm{P}(\mathrm{~B})}
$$

Base of log doesn't really matter (we'll use base 2)

PMI can be positive or negative

Higher PMI \rightarrow more "interesting"

$$
\begin{aligned}
& \text { PMI(Green, White })=\log _{2} \frac{200 / 5750}{(1400 / 5750)(2550 / 5750)}=1.63 \ldots \text { bits } \\
& \mathrm{PMI}(\text { Green, Black })=\log _{2} \frac{200 / 5750}{(1400 / 5750)(2550 / 5750)}=1 .-1.63 \ldots \text { bits } \\
& \mathrm{PMI}(\text { White, Black })=\log _{2} \frac{350 / 5750}{(2550 / 5750)(2550 / 5750)}=-1.69 \ldots \text { bits }
\end{aligned}
$$

$P($ Green, White $)=\frac{200}{5750}$

$$
P(\text { Green, Black })=\frac{200}{5750}
$$

$$
\mathrm{P}(\text { White, Black })=\frac{350}{5750}
$$

$$
P(\text { White })=\frac{2550}{5750}
$$

$$
P(\text { Black })=\frac{2550}{5750}
$$

What is PMI Measuring?

Probability of A and B co-occurring

Probability of just A occurring
Probability of just B occurring
If A and B were "independent"
\rightarrow probability of A and B co-occurring would be $P(A) P(B)$

What is PMI Measuring?

Probability of A and B co-occurring

if equal to 1
$\rightarrow A$, B are indep.

Probability of A and B co-occurring if they were independent
PMI measures (the log of) a ratio that says how far A and B are from being independent

There are lots of connections of information
theory to prediction
Rough intuition:
Something surprising \leftrightarrow less predictable \leftrightarrow more bits to store

Looking at All Pairs of Outcomes

- $P M I$ measures how $P(A, B)$ differs from $P(A) P(B)$ using a log ratio
- Log ratio isn't the only way to compare!
- Another way to compare:

$$
\left.\begin{array}{l}
\frac{[P(A, B)-P(A) P(B)]^{2}}{P(A) P(B)} \\
\text { Phi-square }=\sum_{A, B} \frac{[P(A, B)-P(A) P(B)]^{2}}{P(A) P(B)} \\
\text { Chi-square }=N \times \text { Phi-square }
\end{array}\right] \begin{gathered}
\text { between } 0 \text { and } 1 \\
0 \rightarrow \text { pairs are all } \\
\text { indep. }
\end{gathered}
$$

Phi-square is
$\mathrm{N}=$ sum of all co-occurrence counts (in upper right of triangle earlier)

Example: Phi-Square Calculation

Chi-square $=\mathrm{N} \times$ Phi-square
$\mathrm{N}=$ sum of all co-occurrence counts (in upper right of triangle earlier)

Example: Phi-Square Calculation

Phi-square $=\sum \frac{[P(A, B)-P(A) P(B)]^{2}}{P(A) P(B)}$

Add these up to get: Phi-square $=0.6470 .$.

A, B Interpretation: neighboring pixels not close to being indep.

